Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jian-Rong Su,^a Jian-Ming Gu^b and Duan-Jun Xu^a*

^aDepartment of Chemistry, Zhejiang University, People's Republic of China, and ^bAnalysis and Measurement Center, Zhejiang University, People's Republic of China

Correspondence e-mail: chem@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.003 Å R factor = 0.030 wR factor = 0.076 Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquabis(4-hydroxybenzoato- κ O)(1,10-phenanthroline- $\kappa^2 N$,N')cobalt(II) monohydrate

The title complex, $[Co(C_7H_5O_3)_2(C_{12}H_8N_2)(H_2O)_2]\cdot H_2O$, displays a distorted octahedral coordination geometry about the Co^{II} atom, involving two 4-hydroxybenzoate anions, one 1,10-phenanthroline (phen) molecule and two water molecules. The face-to-face distance of 3.420 (5) Å between partially overlapped parallel phen rings reflects a π - π stacking interaction between neighboring Co^{II} complex molecules. A network of O-H···O hydrogen bonds helps to stabilize the crystal packing.

Comment

As part of our ongoing investigations of aromatic π - π stacking interactions in metal complexes (Su *et al.*, 2005), the title Co^{II} complex incorporating 1,10-phenanthroline (phen), (I) (Fig. 1), has been prepared and its crystal structure is presented here.

The Co^{II} atom in (I) assumes a distorted CoO₄N₂ octahedral coordination geometry formed by two 4-hydroxybenzoate anions, a phen molecule and two coordinated water molecules. The two monodentate 4-hydroxybenzoate anions coordinate to the Co^{II} atom in a *cis* configuration, their benzene rings being nearly perpendicular, with a dihedral angle of 86.84 (5)°. The uncoordinated carboxy O atoms (O22 and O32) accept intramolecular hydrogen bonds from a coordinated water molecule (O1) (Fig. 1 and Table 2).

A partially overlapped disposition between the parallel phen ligands of neighboring Co^{II} complex molecules is observed, as shown in Fig. 2. The face-to-face distance of 3.420 (5) Å between the parallel N2-phen and N2^v-phen planes [symmetry code: (v) -x, 1 - y, 1 - z] suggests the existence of π - π stacking between adjacent Co^{II} complex molecules.

Extensive intermolecular hydrogen-bonding interactions are observed in the crystal structure of (I). Neighboring Co^{II} complexes are linked *via* $O-H \cdots O$ hydrogen bonds (Table

 \bigcirc 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 22 April 2005 Accepted 25 April 2005 Online 7 May 2005

metal-organic papers

2). Hydrogen bonding also occurs between uncoordinated water molecules and the Co^{II} complex (Table 2).

Experimental

An aqueous solution (10 ml) containing $Co(CH_3COO)_2$ ·4H₂O (0.25 g, 1 mmol), 4-hydroxybenzoic acid (0.14 g, 1 mmol) and Na₂CO₃ (0.06 g, 1 mmol) was mixed with an ethanol solution (10 ml) of phen (0.20 g, 1 mmol). The mixture was refluxed for 5 h, then cooled to room temperature and filtered. Orange–red single crystals of (I) were obtained from the filtrate after 3 weeks.

 $D_x = 1.499 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation Cell parameters from 10537

reflections

 $\mu=0.74~\mathrm{mm}^{-1}$

T = 295 (3) K Block, orange-red $0.28 \times 0.25 \times 0.15$ mm

 $R_{\rm int} = 0.031$

 $\theta_{\rm max} = 25.0^{\circ}$

 $h = -14 \rightarrow 14$

 $k = -25 \rightarrow 24$

 $l = -13 \rightarrow 13$

4241 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0423P)^2]$

+ 0.8385P] where $P = (F_o^2 + 2F_c^2)/3$

 $\Delta \rho_{\text{max}} = 0.22 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.30 \text{ e} \text{ Å}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

3635 reflections with $I > 2\sigma(I)$

 $\theta = 2.6 - 24.8^{\circ}$

Crystal data

$[Co(C_7H_5O_3)_2(C_{12}H_8N_2)-$
$(H_2O)_2] \cdot H_2O$
$M_r = 567.40$
Monoclinic, $P2_1/c$
a = 11.8707 (4) Å
b = 21.2746 (6) Å
c = 11.2385 (4) Å
$\beta = 117.639 \ (8)^{\circ}$
V = 2514.3 (2) Å ³
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.811, T_{max} = 0.892$ 17650 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.076$ S = 1.024241 reflections 343 parameters H-atom parameters constrained

Table 1

Selected bond lengths (Å).

Co-O1	2.1453 (14)	Co-O31	2.0604 (13)
Co-O2	2.1361 (13)	Co-N1	2.1497 (16)
Co-O21	2.1349 (13)	Co-N2	2.1226 (16)

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H1···O22	0.87	1.74	2.595 (2)	165
O1-H2···O32	0.94	1.77	2.650 (2)	154
$O2-H3 \cdot \cdot \cdot O31^{i}$	0.86	2.07	2.840 (2)	149
$O2-H4$ ··· $O21^{i}$	0.88	1.96	2.783 (2)	155
$O23-H23\cdots O32^{ii}$	0.92	1.77	2.687 (2)	171
O33−H33···O1W	0.93	1.70	2.631 (3)	177
$O1W-H1A\cdots O1^{iii}$	0.88	1.87	2.745 (3)	174
$O1W-H1B\cdots O22^{iv}$	0.89	1.94	2.820 (3)	168

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, -z; (iii) 1 + x, $\frac{3}{2} - y$, $\frac{1}{2} + z$; (iv) 1 - x, $\frac{1}{2} + y$, $\frac{1}{2} - z$.

Aromatic H atoms were placed in calculated positions, with C–H = 0.93 Å, and refined as riding with the constraint $U_{iso}(H)$ =

Figure 1

The molecular structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for the H atoms). The dashed lines indicate hydrogen-bonding interactions.

 $\pi - \pi$ stacking between parallel phen rings of neighboring Co^{II} complex molecules in (I). [Symmetry code: (v) -x, 1 - y, 1 - z.]

 $1.2U_{eq}(\text{carrier})$ applied. The other H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with a fixed U_{iso} of 0.05 Å².

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
 Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
 Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). *PROCESS-AUTO*. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). *CrystalStructure*. Version 3.00. Rigaku/MSC, 9009 New
- Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Su, J.-R., Gu, J.-M. & Xu, D.-J. (2005). Acta Cryst. E61, m379-381.